FastS: FAST structured grid Navier-Stokes solver
Preamble
FastS is an efficient Navier-Stokes solver for use on structured grids.
FastS module works on CGNS/python trees (pyTrees) containing grid information (coordinates must be defined, boundary conditions and flow solution).
This module is only available for the pyTree interface:
import FastS.PyTree as FastS
List of functions
– Computation Preparation
Perform necessary operations for the solver to run. |
|
Create a node in tree to store convergence history. |
|
Create node in tree to store stats. |
|
Create nodes to store stress data. |
– Running computation
Compute a given number of iterations. |
|
– Post
Compute the space/time average of flowfields in tmy. |
|
Compute efforts in teff. |
|
Compute given variables. |
|
Compute gradient of fiven variables. |
|
Extract residuals in an ascii file (tp format). |
Contents
Preparation
- FastS.PyTree.warmup(t, tc, graph=None, infos_ale=None, tmy=None, verbose=0)
Compute all necessary pre-requisites for solver:
Metrics (face normales, volume)
Primitive variables initialization and delete of conservative ones
Memory optimimization (Numa access and contiguous access of Density, VelocityX,.. VelocityZ,…, Temperature)
Work array creation (Storage of RHS, Matrix coef for implicit time scheme, lock for openmp,…)
Initialization of grid Velocities (ALE)
Memory optimimization access for the connectivity tree, tc.
Ghostcell cells filling with BC and connectivity
Init of ViscosityEddy for NSLaminar, LES and SA computations
- Parameters:
t (pyTree) – input pyTree
tc (pyTree) – input tree containing connection information
graph (dictionary) – input communication graph
infos_ale (list) – input [position angle (rad), angle rotation speed (rad s^1)]
tmy (pyTree) – stat tree if any
verbose – if 1, display information about threads distribution
verbose – int (0 or 1)
- Returns:
(t, tc, metrics)
- Return type:
tuple
CAUTION!!!
MUST be called before compute or everytime the solution tree is modified by a non in place function
CAUTION!!!
Example of use:
# - warmup (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import FastS.PyTree as FastS import FastC.PyTree as FastC import Initiator.PyTree as I ni = 155; dx = 100./(ni-1); dz = 0.01 a = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) a = C.fillEmptyBCWith(a, 'far', 'BCFarfield', dim=2) I._initConst(a, MInf=0.4, loc='centers') C._addState(a, 'GoverningEquations', 'Euler') C._addState(a, MInf=0.4) t = C.newPyTree(['Base', a]) # Numerics numb = {} numb["temporal_scheme"] = "explicit" numb["ss_iteration"] = 20 numz = {} numz["time_step"] = 0.00004444 numz["scheme"] = "ausmpred" FastC._setNum2Zones(t, numz); FastC._setNum2Base(t, numb) (t, tc, metrics) = FastS.warmup(t, None)
- FastS.PyTree._createConvergenceHistory(t, nrec)
Create a node in each zone with convergence information (residuals) MUST be called before _displayTemporalCriteria() and only for steady cases. t is a pyTree, nrec is the size of the data arrays to store the residuals. The data arrays are stored during the call to FastS.displayTemporalCriteria
- Parameters:
t (pyTree) – input pyTree
nrec –
??
Example of use:
# - convergenceHistory (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import FastS.PyTree as FastS import FastC.PyTree as FastC import Connector.PyTree as X import Converter.Internal as Internal import Initiator.PyTree as I ni = 155; dx = 100./(ni-1); dz = 0.01 a1 = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) a1 = C.fillEmptyBCWith(a1, 'far', 'BCFarfield', dim=2) a1 = I.initConst(a1, MInf=0.4, loc='centers') a1 = C.addState(a1, 'GoverningEquations', 'Euler') a1 = C.addState(a1, MInf=0.4) t = C.newPyTree(['Base', a1]) # Numerics modulo_verif = 20 numb = {} numb["temporal_scheme"] = "implicit" numb["ss_iteration"] = 3 numb["modulo_verif"] = modulo_verif numz = {} numz["time_step"] = 0.0007 numz["time_step_nature"] = "local" numz["cfl"] = 4.0 numz["scheme"] = "roe" numz["slope"] = "minmod" FastC._setNum2Zones(t, numz); FastC._setNum2Base(t, numb) (t, tc, metrics) = FastS.warmup(t, None) # Number or records to store residuals nrec = 100//modulo_verif #To remove old ConvergenceHistory nodes C._rmNodes(t, "ZoneConvergenceHistory") #Convergence history with nrec records FastS.createConvergenceHistory(t, nrec) nit = 100; time = 0 time_step = Internal.getNodeFromName(t, 'time_step') time_step = Internal.getValue(time_step) for it in range(nit): FastS._compute(t, metrics, it, tc) if it%modulo_verif == 0: FastS.displayTemporalCriteria(t, metrics, it, format='store') time += time_step # time stamp Internal.createUniqueChild(t, 'Iteration', 'DataArray_t', value=nit) Internal.createUniqueChild(t, 'Time', 'DataArray_t', value=time) C.convertPyTree2File(t, 'out.cgns')
- FastS.PyTree.createStatNodes(t, dir='0')
Create a tree, tmy, used by FastS._computeStats, to compute and store space and time averaged value of the flowfield.
The size of zones in tmy and t differs if space averaging occurs.
Each zone of tmy has a node, named ‘parameter_int’ with contains a numpy. The number of time samples is stored in parameter_int[2].
The averaged fields, computed at the center of the cell, are :
Density
MomentumX
MomentumY
MomentumZ
Pressure
Pressure²
ViscosityEddy
MomentumX²/Density
MomentumY²/Density
MomentumZ²/Density
MomentumX * MomentumY / Density
MomentumX * MomentumZ / Density
MomentumY * MomentumZ / Density
Return a new tree in tmy:
- Parameters:
t (pyTree) – input pyTree
dir (character) – input to determine homogeneous direction in a block structured sense
- Returns:
tmy
- Return type:
tree
the dir character can have the following values:
‘0’ : (no space average)
‘i’ : space average along the I direction of the structured block
‘j’ : space average along the J direction of the structured block
‘k’ : space average along the K direction of the structured block
‘ij’: space average along the I and J directions of the structured block
‘ik’: space average along the I and K directions of the structured block
‘jk’: space average along the J and K directions of the structured block
Example of use:
# - createStatNodes (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Connector.PyTree as X import FastS.PyTree as FastS import FastC.PyTree as FastC import Initiator.PyTree as I ni = 155 ; dx = 100./(ni-1) ; dz = 0.01 a1 = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) a1 = C.fillEmptyBCWith(a1, 'far', 'BCFarfield', dim=2) a1 = I.initConst(a1, MInf=0.4, loc='centers') a1 = C.addState(a1, 'GoverningEquations', 'Euler') a1 = C.addState(a1, MInf=0.4) t = C.newPyTree(['Base', a1]) # Numerics numb = {} numb["temporal_scheme"] = "explicit" numb["ss_iteration"] = 20 numz = {} numz["time_step"] = 0.00004444 numz["scheme"] = "ausmpred" FastC._setNum2Zones(t, numz) ; FastC._setNum2Base(t, numb) # Prim vars, solver tag, compact, metric (t, tc, metrics) = FastS.warmup(t, None) tmy = FastS.createStatNodes(t, dir='0') C.convertPyTree2File(tmy, 'out.cgns')
- FastS.PyTree.createStressNodes(t, BC=BCTypes)
Create a tree, used by FastS._computeStress, to compute and store numerical fluxes, Gradient and Cp on a list of boundary conditions. Return a new tree in teff.
- Parameters:
t (pyTree) – input pyTree
BCTypes (list of strings) – types of BC to extract
- Returns:
tmy
- Return type:
tree
Default value is BC=None.
Example of use:
# - createStressNodes (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import FastS.PyTree as FastS import FastC.PyTree as FastC import Initiator.PyTree as I ni = 155 ; dx = 100./(ni-1) ; dz = 1. a1 = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) a1 = C.fillEmptyBCWith(a1, 'wall', 'BCWall', dim=2) a1 = I.initConst(a1, MInf=0.4, loc='centers') a1 = C.addState(a1, 'GoverningEquations', 'Euler') a1 = C.addState(a1, MInf=0.4) t = C.newPyTree(['Base', a1]) # Numerics numb = {}; numz = {} FastC._setNum2Zones(t, numz); FastC._setNum2Base(t, numb) # Prim vars, solver tag, compact, metric (t, tc, metrics) = FastS.warmup(t, None) teff = FastS.createStressNodes(t, BC=['BCWall','BCWallViscous']) FastS._computeStress(t, teff, metrics) C.convertPyTree2File(teff, 'stress.cgns')
Running computation
- FastS.PyTree._compute(t, metrics, nit, tc=None, graph=None)
Perform one iteration of solver to advance (in place) the solution from t^n to t^(n+1).
nit is the current iteration number; metrics contains normale and volume informations; tc is the connectivity tree (if any):
- Parameters:
t (pyTree) – input pyTree
metrics (list) –
nit (int) – current iteration number
tc (pyTree) – connecting pyTree
graph (dictionary) – communication graph
Example of use:
# - compute (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import FastS.PyTree as FastS import FastC.PyTree as FastC import Initiator.PyTree as I ni = 155; dx = 100./(ni-1); dz = 0.01 a1 = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) a1 = C.fillEmptyBCWith(a1, 'far', 'BCFarfield', dim=2) a1 = I.initConst(a1, MInf=0.4, loc='centers') a1 = C.addState(a1, 'GoverningEquations', 'Euler') a1 = C.addState(a1, MInf=0.4) t = C.newPyTree(['Base', a1]) # Numerics numb = {} numb["temporal_scheme"] = "explicit" numb["ss_iteration"] = 20 numz = {} numz["time_step"] = 0.00004444 numz["scheme"] = "ausmpred" FastC._setNum2Zones(t, numz) ; FastC._setNum2Base(t, numb) # Prim vars, solver tag, compact, metric (t, tc, metrics) = FastS.warmup(t, None) # Compute for it in range(1,200): FastS._compute(t, metrics, it) # Save C.convertPyTree2File(t, 'out.cgns')
- FastS.PyTree.displayTemporalCriteria(t, metrics, nit, format=None)
Displays CFL and implicit convergence information.
- Parameters:
t (pyTree) – input pyTree
metrics –
nit –
format (string) – format for residual output (‘None’, ‘double’, ‘store’)
format can take 2 values:
None (display residuals on the stdout with f7.2 Fortran format)
‘store’ (store residual in the tree if CongergenceHistory node has been created by FastS.createConvergenceHistory)
Example of use:
# - displayTemporalCriteria (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Connector.PyTree as X import FastS.PyTree as FastS import FastC.PyTree as FastC import Initiator.PyTree as I ni = 155; dx = 100./(ni-1); dz = 0.01 a = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) a = C.fillEmptyBCWith(a, 'far', 'BCFarfield', dim=2) I._initConst(a, MInf=0.4, loc='centers') C._addState(a, 'GoverningEquations', 'Euler') C._addState(a, MInf=0.4) t = C.newPyTree(['Base',a]) # Numerics numb = {} numb["temporal_scheme"] = "explicit" numb["ss_iteration"] = 20 numb["modulo_verif"] = 1 numz = {} #numz["time_step"] = 0.00004444 numz["time_step_nature"] = "local" numz["cfl"] = 0.6 numz["scheme"] = "ausmpred" FastC._setNum2Zones(t, numz); FastC._setNum2Base(t, numb) # Prim vars, solver tag, compact, metric (t, tc, metrics) = FastS.warmup(t, None) # Compute for it in range(1,5): FastS._compute(t, metrics, it) FastS._displayTemporalCriteria(t, metrics, it) C.convertPyTree2File(t, 'out.cgns')
Post
- FastS.PyTree._computeStats(t, tmy, metrics)
Compute the space/time average of the flowfield in a tree tmy (in place).
- Parameters:
t (pyTree) – input pyTree
tmy (pyTree) – stat tree
metrics (metrics) – metrics of t
Example of use:
# - computeStats (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import FastS.PyTree as FastS import FastC.PyTree as FastC import Initiator.PyTree as I ni = 155; dx = 100./(ni-1); dz = 0.01 a1 = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,15)) a1 = C.fillEmptyBCWith(a1, 'far', 'BCFarfield', dim=3) a1 = I.initConst(a1, MInf=0.4, loc='centers') a1 = C.addState(a1, 'GoverningEquations', 'Euler') a1 = C.addState(a1, MInf=0.4) t = C.newPyTree(['Base', a1]) # Numerics numb = {} numb["temporal_scheme"] = "explicit" numb["ss_iteration"] = 20 numz = {} numz["time_step"] = 0.00004444 numz["scheme"] = "ausmpred" FastC._setNum2Zones(t, numz) ; FastC._setNum2Base(t, numb) # Prim vars, solver tag, compact, metric (t, tc, metrics) = FastS.warmup(t, None) ## Statsnodes creation from scratch tmy = FastS.createStatNodes(t, dir='k') ### Statsnodes creation from restart file #tmy = FastS.initStats('stat.cgns') # Compute for nitrun in range(1,200): print('it=', nitrun) FastS._compute(t, metrics, nitrun) FastS._computeStats(t, tmy, metrics) C.convertPyTree2File(tmy, 'stat.cgns')
- FastS.PyTree._computeStress(t, teff, metrics, xyz_ref=(0., 0., 0.))
Compute in teff (in place) data related to a list of Boundary conditions defined by FastS._createStressNodes.
- Parameters:
t (pyTree) – input pyTree
teff (pyTree) – stress tree
metrics (metrics) – metrics of t
xyz_ref (tupple of 3 floats) – reference point for momentum computation
- Returns:
effort
- Return type:
list
in the tree teff, the following variables are updated in the FlowSolution#Centers node thanks to primitive variable of t:
Density (contains the numerical fluxes linked to the mass conservation: rho (U . n) x S)
MomentumX (contains the normalized numerical fluxes linked to the MomentumX conservation minus P_inf*n: (( rho (U . n) Ux + (P-P_inf).nx ) x S ) x 0.5/rho_inf/U_inf^2
MomentumY…
MomentumZ…
EnergyStagnationDensity (contains the normalized numerical fluxes of the linked to the energy conservation)
gradxVelocityX (gradient in the x direction of VelocityX at the position of the BC)
gradyVelocityX
gradzVelocityX
gradxVelocityY
gradyVelocityY
gradzVelocityY
gradxVelocityZ
gradyVelocityZ
gradzVelocityZ
gradxTemperature
gradyTemperature
gradzTemperature
CoefPressure
ViscosityMolecular + ViscosityEddy
Density2: contains density (kg/m^3)
Pressure
Normalized data are normalized by 0.5 rho_inf U_inf^2 defined in the ReferenceState CGNS node
the return of the function, effort, is a list of 8 items which contains integral over the surface of the BC of different variables of teff:
integral of MomentumX (normalized numerical fluxes linked to the MomentumX conservation) give access to cx (stored in effort[0])
integral of MomentumY (normalized numerical fluxes linked to the MomentumY conservation) give access to cy (stored in effort[1])
integral of MomentumZ (normalized numerical fluxes linked to the MomentumZ conservation) give access to cz (stored in effort[2])
give access to cmx (stored in effort[3])
give access to cmy (stored in effort[4])
give access to cmz (stored in effort[5])
give access to surface of the BC (stored in effort[6])
integral of Density (numerical fluxes linked to the Density conservation) give access to mass flow rate (stored in effort[7])
integral of MomemtumX (numerical fluxes linked to the MomentumX conservation) give access to the stress (Newton) in the X direction (stored in effort[8])
integral of MomemtumY (numerical fluxes linked to the MomentumY conservation) give access to the stress (Newton) in the Y direction (stored in effort[9])
integral of MomemtumZ (numerical fluxes linked to the MomentumZ conservation) give access to the stress (Newton) in the Z direction (stored in effort[10])
For a 2D computation in (x,y) plan, with an angle of attack of theta:
drag = eff[0]*cos(theta) + eff[1]*sin(theta)
lift = eff[1]*cos(theta) - eff[0]*sin(theta)
Example of use:
# - computeStress (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Connector.PyTree as X import FastS.PyTree as FastS import FastC.PyTree as FastC import Initiator.PyTree as I ni = 155 ; dx = 100./(ni-1) ; dz = 1. a1 = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) a1 = C.fillEmptyBCWith(a1, 'wall', 'BCWall', dim=2) a1 = I.initConst(a1, MInf=0.4, loc='centers') a1 = C.addState(a1, 'GoverningEquations', 'Euler') a1 = C.addState(a1, MInf=0.4) t = C.newPyTree(['Base', a1]) # Numerics numb = {}; numz = {} numb = { 'temporal_scheme': 'implicit' } numz = { 'scheme': 'ausmpred' } FastC._setNum2Zones(t, numz); FastC._setNum2Base(t, numb) # Prim vars, solver tag, compact, metric (t, tc, metrics) = FastS.warmup(t, None) teff = FastS.createStressNodes(t, ['BCWall']) # Compute for nitrun in range(1,200): FastS._compute(t, metrics, nitrun) effort = FastS._computeStress(t, teff, metrics) C.convertPyTree2File(teff, 'stress.cgns')
# - computeStress for flow rate (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import Connector.PyTree as X import FastS.PyTree as FastS import FastC.PyTree as FastC import Converter.Internal as Internal import Initiator.PyTree as I import numpy ni = 155 ; dx = 100./(ni-1) ; dz = 1. a1 = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) a1 = C.fillEmptyBCWith(a1, 'inflow', 'BCInflow', dim=2) a1 = I.initConst(a1, MInf=0.4, loc='centers') a1 = C.addState(a1, 'GoverningEquations', 'Euler') a1 = C.addState(a1, MInf=0.4) t = C.newPyTree(['Base', a1]) # Numerics numb = {}; numz = {} numb = { 'temporal_scheme':'implicit' } numz = { 'scheme':'ausmpred' } FastC._setNum2Zones(t, numz); FastC._setNum2Base(t, numb) # Prim vars, solver tag, compact, metric (t, tc, metrics) = FastS.warmup(t, None) flowRateTree = FastS.createStressNodes(t, BC=['BCInflow']) # Compute for nitrun in range(1,200): FastS._compute(t, metrics, nitrun) effort = FastS._computeStress(t, flowRateTree, metrics) # compute of the mass flow rate with numerical flux old fashion flowRateZones = Internal.getZones(flowRateTree) flowRate = 0. for z in flowRateZones: sol = Internal.getNodeFromName1(z, 'FlowSolution#Centers') density = Internal.getNodeFromName1(sol, 'Density')[1] flowRate += numpy.sum(density) print('the mass flow rate accross the Inflow BC is: ', flowRate) # compute of the mass flow rate with numerical flux new way print('the mass flow rate accross the Inflow BC is: ', effort[7]) C.convertPyTree2File(flowRateTree, 'flowRate.cgns')
- FastS.PyTree._computeVariables(t, metrics, variables)
Compute specified variables.
- Parameters:
t (pyTree) – input/output pyTree
metrics (list) – input metrics of t
variables (list of strings) – input variables to compute
The available variables are:
QCriterion
QpCriterion = QCriterion* min( 1, abs(dDensitydt) )
Enstrophy
Example of use:
# - computeVariables (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import FastS.PyTree as FastS import FastC.PyTree as FastC import Initiator.PyTree as I ni = 155; dx = 100./(ni-1); dz = 0.01 a1 = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) a1 = C.fillEmptyBCWith(a1, 'far', 'BCFarfield', dim=2) a1 = I.initConst(a1, MInf=0.4, loc='centers') a1 = C.addState(a1, 'GoverningEquations', 'Euler') a1 = C.addState(a1, MInf=0.4) t = C.newPyTree(['Base', a1]) # Numerics numb = {} numb["temporal_scheme"] = "explicit" numb["ss_iteration"] = 20 numz = {} numz["time_step"] = 0.00004444 numz["scheme"] = "ausmpred" FastC._setNum2Zones(t, numz) ; FastC._setNum2Base(t, numb) # Prim vars, solver tag, compact, metric (t, tc, metrics) = FastS.warmup(t, None) # Compute for it in range(1,200): FastS._compute(t, metrics, it) FastS._computeVariables(t, metrics, ['Enstrophy']) # Save C.convertPyTree2File(t, 'out.cgns')
- FastS.PyTree._computeGrad(t, metrics, variables, order=2)
Compute specified variables gradients at cell centers with FV Green Gauss approach.
- Parameters:
t (pyTree) – input/output pyTree
metrics (list) – metrics of t
variables (list of strings) – list of variable names to extract grad
order (int (2 or 4)) – order for gradients
In case a variable is not in t or in a zone, the computation of the gradients is skipped.
- order can take 2 values:
2: classical flux reconstruction (2nd order)
4: flux reconstruction formula giving 4th order accurate scheme on cartesian grid
Example of use:
# - computeGrad (pyTree) - import Converter.PyTree as C import Converter.Internal as Internal import Generator.PyTree as G import FastS.PyTree as FastS import Fast.PyTree as Fast import Initiator.PyTree as I ni = 155; dx = 100./(ni-1); dz = 0.01 a1 = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) a1 = C.fillEmptyBCWith(a1, 'far', 'BCFarfield', dim=2) a1 = I.initLamb(a1, position=(0.,0.), Gamma=2., MInf=0.4, loc='centers') #a1 = I.initConst(a1, MInf=0.4, loc='centers') a1 = C.addState(a1, 'GoverningEquations', 'Euler') a1 = C.addState(a1, MInf=0.4) t = C.newPyTree(['Base', a1]) # Numerics numb = {} numb["temporal_scheme"] = "explicit" numb["ss_iteration"] = 20 numz = {} numz["time_step"] = 0.0004444 numz["scheme"] = "ausmpred" Fast._setNum2Zones(t, numz) ; Fast._setNum2Base(t, numb) # Prim vars, solver tag, compact, metric (t, tc, metrics) = FastS.warmup(t, None) # Compute #for it in range(0,1): for it in range(1,50): FastS._compute(t, metrics, it) #FastS._computeGrad(t, metrics, ['Density']) C.convertPyTree2File(t, 'out.cgns')
- FastS.PyTree._extractConvergenceHistory(t, fileout, perZones=True, perBases=True)
Extract convergence information (residuals) for each zone or/and for each base.
- Parameters:
t (pyTree) – input pyTree with ConvergenceHistory computed
fileout (string) – name of file for resiudal extraction (tp format)
perZones (Boolean) – if True, write residuals for each zones
perBases (Boolean) – if True, write residuals for each bases
Example of use:
# - extractConvergenceHistory (pyTree) - import Converter.PyTree as C import Generator.PyTree as G import FastS.PyTree as FastS import FastC.PyTree as FastC import Connector.PyTree as X import Converter.Internal as Internal import Initiator.PyTree as I ni = 155; dx = 100./(ni-1); dz = 0.01 a1 = G.cart((-50,-50,0.), (dx,dx,dz), (ni,ni,2)) C._fillEmptyBCWith(a1, 'far', 'BCFarfield', dim=2) I._initConst(a1, MInf=0.4, loc='centers') C._addState(a1, 'GoverningEquations', 'Euler') C._addState(a1, MInf=0.4) t = C.newPyTree(['Base', a1]) # Numerics modulo_verif = 20 numb = {} numb["temporal_scheme"] = "implicit" numb["ss_iteration"] = 3 numb["modulo_verif"] = modulo_verif numz = {} numz["time_step"] = 0.0007 numz["time_step_nature"] = "local" numz["cfl"] = 4.0 numz["scheme"] = "roe" numz["slope"] = "minmod" FastC._setNum2Zones(t, numz); FastC._setNum2Base(t, numb) (t, tc, metrics) = FastS.warmup(t, None) # Number or records to store residuals nrec = 100//modulo_verif #To remove old ConvergenceHistory nodes C._rmNodes(t, "ZoneConvergenceHistory") #Convergence history with nrec records FastS._createConvergenceHistory(t, nrec) nit = 100; time = 0 time_step = Internal.getNodeFromName(t, 'time_step') time_step = Internal.getValue(time_step) for it in range(nit): FastS._compute(t, metrics, it, tc) if it%modulo_verif == 0: FastS._displayTemporalCriteria(t, metrics, it, format='store') time += time_step # extraction des residus et creation du fichier "residus.dat" FastS._extractConvergenceHistory(t,"residus.dat")